(-3y^2-9y)+(9y^2+y-3)=

Simple and best practice solution for (-3y^2-9y)+(9y^2+y-3)= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-3y^2-9y)+(9y^2+y-3)= equation:


Simplifying
(-3y2 + -9y) + (9y2 + y + -3) = 0

Reorder the terms:
(-9y + -3y2) + (9y2 + y + -3) = 0

Remove parenthesis around (-9y + -3y2)
-9y + -3y2 + (9y2 + y + -3) = 0

Reorder the terms:
-9y + -3y2 + (-3 + y + 9y2) = 0

Remove parenthesis around (-3 + y + 9y2)
-9y + -3y2 + -3 + y + 9y2 = 0

Reorder the terms:
-3 + -9y + y + -3y2 + 9y2 = 0

Combine like terms: -9y + y = -8y
-3 + -8y + -3y2 + 9y2 = 0

Combine like terms: -3y2 + 9y2 = 6y2
-3 + -8y + 6y2 = 0

Solving
-3 + -8y + 6y2 = 0

Solving for variable 'y'.

Begin completing the square.  Divide all terms by
6 the coefficient of the squared term: 

Divide each side by '6'.
-0.5 + -1.333333333y + y2 = 0

Move the constant term to the right:

Add '0.5' to each side of the equation.
-0.5 + -1.333333333y + 0.5 + y2 = 0 + 0.5

Reorder the terms:
-0.5 + 0.5 + -1.333333333y + y2 = 0 + 0.5

Combine like terms: -0.5 + 0.5 = 0.0
0.0 + -1.333333333y + y2 = 0 + 0.5
-1.333333333y + y2 = 0 + 0.5

Combine like terms: 0 + 0.5 = 0.5
-1.333333333y + y2 = 0.5

The y term is -1.333333333y.  Take half its coefficient (-0.6666666665).
Square it (0.4444444442) and add it to both sides.

Add '0.4444444442' to each side of the equation.
-1.333333333y + 0.4444444442 + y2 = 0.5 + 0.4444444442

Reorder the terms:
0.4444444442 + -1.333333333y + y2 = 0.5 + 0.4444444442

Combine like terms: 0.5 + 0.4444444442 = 0.9444444442
0.4444444442 + -1.333333333y + y2 = 0.9444444442

Factor a perfect square on the left side:
(y + -0.6666666665)(y + -0.6666666665) = 0.9444444442

Calculate the square root of the right side: 0.971825316

Break this problem into two subproblems by setting 
(y + -0.6666666665) equal to 0.971825316 and -0.971825316.

Subproblem 1

y + -0.6666666665 = 0.971825316 Simplifying y + -0.6666666665 = 0.971825316 Reorder the terms: -0.6666666665 + y = 0.971825316 Solving -0.6666666665 + y = 0.971825316 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '0.6666666665' to each side of the equation. -0.6666666665 + 0.6666666665 + y = 0.971825316 + 0.6666666665 Combine like terms: -0.6666666665 + 0.6666666665 = 0.0000000000 0.0000000000 + y = 0.971825316 + 0.6666666665 y = 0.971825316 + 0.6666666665 Combine like terms: 0.971825316 + 0.6666666665 = 1.6384919825 y = 1.6384919825 Simplifying y = 1.6384919825

Subproblem 2

y + -0.6666666665 = -0.971825316 Simplifying y + -0.6666666665 = -0.971825316 Reorder the terms: -0.6666666665 + y = -0.971825316 Solving -0.6666666665 + y = -0.971825316 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '0.6666666665' to each side of the equation. -0.6666666665 + 0.6666666665 + y = -0.971825316 + 0.6666666665 Combine like terms: -0.6666666665 + 0.6666666665 = 0.0000000000 0.0000000000 + y = -0.971825316 + 0.6666666665 y = -0.971825316 + 0.6666666665 Combine like terms: -0.971825316 + 0.6666666665 = -0.3051586495 y = -0.3051586495 Simplifying y = -0.3051586495

Solution

The solution to the problem is based on the solutions from the subproblems. y = {1.6384919825, -0.3051586495}

See similar equations:

| x^2+10x+40=3x+28 | | h^3-4h^2-16h+64=0 | | 7a-5(-2-5a)=-182 | | 49+4x^2=28x | | N-70=200-(15*4) | | 9c+4=8c+4 | | 4x+9=-3x-5 | | 75.39+b+41.1=(-28.946) | | 4x^3-24x^2+16x=0 | | 3a+12a=76 | | -3x+0.8=1.4 | | f(x)=(x-3)(x+7) | | 5=3x+4x | | 6x-1-4x-4=6x+4 | | 13x-10=-3x^2 | | 220=6.28r | | =6m^2+7m+2 | | ln(5x)+7=3 | | -5u=6-4u | | Xy+2y+x=6 | | Log(3)(3x-6)=3 | | 2x^2+1x+15=0 | | 6x-6(2-7x)=-300 | | -1+6x=-7 | | 2.25(-20)+11= | | 4(13)= | | 4y+7=2x+5 | | 8*y-2*y=24 | | 7p-5=-3 | | -29+6x=7(x-4) | | 4+10+4-2x=44 | | (5/3)(4x-5)=4x-(1/3) |

Equations solver categories